skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gurrala, Lakshmiprasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Various chemical transformation approaches are being actively developed to address the environmental accumulation of plastic waste. However, most postconsumer plastics are heterogeneous, exhibit high melt viscosity, and are insoluble in most conventional solvents. Such properties result in transport‐limiting chemical transformations, low conversion rates, and low product selectivity. Although supercritical fluids (SCFs) have been a matter of continuing scientific interest in several mass‐transfer processes, the use of SCFs as tunable media for the chemical transformation of postconsumer plastics is still in its early stages, but has rapidly advanced in recent years. Therefore, this review reports on the current state‐of‐art of chemical transformation of plastics using SCFs. It addresses the effects of sub and supercritical CO2(scCO2) on solvolysis‐based technologies. Additionally, it reviews recent advances on the use of supercritical organic solvents (e.g., ethanol, methanol) and supercritical water (SCW) as reaction media for the solvolysis and liquefaction of plastics, respectively, and the latest developments in the simultaneous conversion of CO2and waste plastics. Overall, developing technologies that minimize mass transfer limitations during the chemical transformation of plastics is critical to overcoming some of the major bottlenecks hampering product yield and selectively, and ultimately the economic viability of plastics recycling and upcycling. 
    more » « less